Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
Chemometr Intell Lab Syst ; 231: 104695, 2022 Dec 15.
Article in English | MEDLINE | ID: covidwho-2238818

ABSTRACT

This paper aims to diagnose COVID-19 by using Chest X-Ray (CXR) scan images in a deep learning-based system. First of all, COVID-19 Chest X-Ray Dataset is used to segment the lung parts in CXR images semantically. DeepLabV3+ architecture is trained by using the masks of the lung parts in this dataset. The trained architecture is then fed with images in the COVID-19 Radiography Database. In order to improve the output images, some image preprocessing steps are applied. As a result, lung regions are successfully segmented from CXR images. The next step is feature extraction and classification. While features are extracted with modified AlexNet (mAlexNet), Support Vector Machine (SVM) is used for classification. As a result, 3-class data consisting of Normal, Viral Pneumonia and COVID-19 class are classified with 99.8% success. Classification results show that the proposed method is superior to previous state-of-the-art methods.

2.
Front Public Health ; 10: 855994, 2022.
Article in English | MEDLINE | ID: covidwho-1963590

ABSTRACT

Artificial intelligence researchers conducted different studies to reduce the spread of COVID-19. Unlike other studies, this paper isn't for early infection diagnosis, but for preventing the transmission of COVID-19 in social environments. Among the studies on this is regarding social distancing, as this method is proven to prevent COVID-19 to be transmitted from one to another. In the study, Robot Operating System (ROS) simulates a shopping mall using Gazebo, and customers are monitored by Turtlebot and Unmanned Aerial Vehicle (UAV, DJI Tello). Through frames analysis captured by Turtlebot, a particular person is identified and followed at the shopping mall. Turtlebot is a wheeled robot that follows people without contact and is used as a shopping cart. Therefore, a customer doesn't touch the shopping cart that someone else comes into contact with, and also makes his/her shopping easier. The UAV detects people from above and determines the distance between people. In this way, a warning system can be created by detecting places where social distance is neglected. Histogram of Oriented-Gradients (HOG)-Support Vector Machine (SVM) is applied by Turtlebot to detect humans, and Kalman-Filter is used for human tracking. SegNet is performed for semantically detecting people and measuring distance via UAV. This paper proposes a new robotic study to prevent the infection and proved that this system is feasible.


Subject(s)
COVID-19 , Robotics , Artificial Intelligence , COVID-19/prevention & control , Female , Humans , Male
3.
Symmetry ; 14(7):1310, 2022.
Article in English | MDPI | ID: covidwho-1911592

ABSTRACT

Coronavirus disease (COVID-19), which affects the whole world, continues to spread. This disease has infected and killed millions of people worldwide. To limit the rate of spread of the disease, early detection should be provided and then the infected person should be quarantined. This paper proposes a Deep Learning-based application for early and accurate diagnosis of COVID-19. Compared to other studies, this application's biggest difference and contribution are that it uses Tree Seed Algorithm (TSA)-optimized Artificial Neural Networks (ANN) to classify deep architectural features. Previous studies generally use fully connected layers for end-to-end learning classification. However, this study proves that even relatively simple AlexNet features can be classified more accurately with the TSA-ANN structure. The proposed hybrid model provides diagnosis with 98.54% accuracy for COVID-19 disease, which shows asymmetric distribution on Computed Tomography (CT) images. As a result, it is shown that using the proposed classification strategy, the features of end-to-end architectures can be classified more accurately.

4.
Frontiers in public health ; 10, 2022.
Article in English | EuropePMC | ID: covidwho-1897577

ABSTRACT

Artificial intelligence researchers conducted different studies to reduce the spread of COVID-19. Unlike other studies, this paper isn't for early infection diagnosis, but for preventing the transmission of COVID-19 in social environments. Among the studies on this is regarding social distancing, as this method is proven to prevent COVID-19 to be transmitted from one to another. In the study, Robot Operating System (ROS) simulates a shopping mall using Gazebo, and customers are monitored by Turtlebot and Unmanned Aerial Vehicle (UAV, DJI Tello). Through frames analysis captured by Turtlebot, a particular person is identified and followed at the shopping mall. Turtlebot is a wheeled robot that follows people without contact and is used as a shopping cart. Therefore, a customer doesn't touch the shopping cart that someone else comes into contact with, and also makes his/her shopping easier. The UAV detects people from above and determines the distance between people. In this way, a warning system can be created by detecting places where social distance is neglected. Histogram of Oriented-Gradients (HOG)-Support Vector Machine (SVM) is applied by Turtlebot to detect humans, and Kalman-Filter is used for human tracking. SegNet is performed for semantically detecting people and measuring distance via UAV. This paper proposes a new robotic study to prevent the infection and proved that this system is feasible.

5.
Appl Soft Comput ; 98: 106912, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-932767

ABSTRACT

Coronavirus disease 2019 (COVID-2019), which emerged in Wuhan, China in 2019 and has spread rapidly all over the world since the beginning of 2020, has infected millions of people and caused many deaths. For this pandemic, which is still in effect, mobilization has started all over the world, and various restrictions and precautions have been taken to prevent the spread of this disease. In addition, infected people must be identified in order to control the infection. However, due to the inadequate number of Reverse Transcription Polymerase Chain Reaction (RT-PCR) tests, Chest computed tomography (CT) becomes a popular tool to assist the diagnosis of COVID-19. In this study, two deep learning architectures have been proposed that automatically detect positive COVID-19 cases using Chest CT X-ray images. Lung segmentation (preprocessing) in CT images, which are given as input to these proposed architectures, is performed automatically with Artificial Neural Networks (ANN). Since both architectures contain AlexNet architecture, the recommended method is a transfer learning application. However, the second proposed architecture is a hybrid structure as it contains a Bidirectional Long Short-Term Memories (BiLSTM) layer, which also takes into account the temporal properties. While the COVID-19 classification accuracy of the first architecture is 98.14%, this value is 98.70% in the second hybrid architecture. The results prove that the proposed architecture shows outstanding success in infection detection and, therefore this study contributes to previous studies in terms of both deep architectural design and high classification success.

SELECTION OF CITATIONS
SEARCH DETAIL